
Two-dimensional Array  Beam  Scanning 
via  Externally  and  Mutually  Injection  Locked  Coupled  Oscillators 

Ronald J .  Pogorzelski 
Jet Propulsion Laboratory 

California Institute of Technology 
Pasadena. CA  91 109 

Background 

Some  years ago, Stephan [ 11 proposed an approach to  one dimensional (linear) phased array beam steering 
which requires only a single phase shifter. This involves the  use  of a linear array of voltage-controlled 
electronic oscillators coupled to  nearest neighbors. The oscillators are mutually injection locked by 
controlling their coupling and tuning appropriately.[2][3] Stephan's approach consists of deriving two 
signals from a master oscillator, one signal phase shifted with respect to the other by means of a single 
phase shifter. These two signals are injected into the end oscillators of  the array as shown in Figure 1. The 
result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to 
each oscillator and spaced uniformly along a line, they  will radiate a beam at an angle to  that  line 
determined by the phase gradient which  is, in turn, determined by the phase difference between  the injection 
signals. The beam direction is therefore controlled by adjusting this  phase difference. 
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Figure 1. A one dimensional array of coupled oscillators with end injection. 

Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above 
beam steering technique [4][5]. This was subsequently applied by Pogorzelski in analysis of two- 
dimensional beam steering using perimeter detuning of a coupled oscillator array [6] .  The formulation is 
based  on a continuum model  in  which the oscillator phases are represented by a continuous function 
satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace 
transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. 

Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which  the 
beam control signals are applied to the oscillators on  the perimeter of the array. In this paper the continuum 
model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture 
phase function is obtained. The corresponding behavior of the resulting far-zone radiation pattern  is 
displayed as well. 

The Continuum Model 

Figure 1 shows a two-dimensional array  with signals injected into the perimeter oscillators for the purpose 
of steering the beam. Let a radiating element be connected to each oscillator of the array  and  let the 
elements be uniformly spaced on a planar surface. The aperture phase of this antenna is represented by a 
continuous function governed by the  partial differential equation 



where + is the aperture phase, $inj gives the phase of the injection signals, and V describes the strength and 
distribution of the injection signals. 5 is a dimensionless time measured in inverse inter-oscillator locking 
ranges. The dynamic behavior of the phase is obtained by solving this equation subject to  Neumann 
boundary conditions on the periphery. 

For perimeter injection, the function V takes the form 

where 

and 

The equation is solved by Laplace transformation and expansion of the Green's function in terms of the 
eigenfunctions of the differential operator, obtained by separation of variables, followed by integration over 
the sources represented by VQinj. 

For beamsteering 
~ in j (x ,y ;s )=- [ -xs in~ocos~-ys inOosin~]- .  1 2nzl! 

S a 
Thus, P(x)Anj + Q ( y ) j n j  will  be 

The required integrations can be carried out analytically owing to the delta functions'in the integrand. Each 
term of the series for the solution has a pole in the s plane, the location of  which is determined by 
eigenvalue correponding to  that term. Thus, the inverse Laplace transform can be obtained via residue 
calculus. 

A Numerical Example 

Consider a 21 by 21 element square array with radiating elements spaced one half  wavelength apart. 
Injection signals are assumed  to  be applied to the perimeter oscillators with phases appropriate to steering 
the beam  to far field coordinates 00=30" and $65-1 10" switched  at  time zero. Figure 2 illustrates the 
ensuing dynamic behavior of the oscillators phases. 
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Figure 2. Phase dynamics  during beam steering. 

Note  that during this transient period  the phase surface is  nonplanar  which results in some aberration 
induced gain  reduction and sidelobe distortion in the far-zone beam. Figure 3 shows tbe effect of  this 
aberration on  the far-zone gain as a function  of  time. The  curve labeled “Ideal Gain” includes the projected 
aperture loss but  no aberration loss for comparison. 

Figure 3. Antenna  gain during beam steering. 

Finally, Figure 4 shows the result of successive application of a sequence of beamsteering by displaying the 
locations of the beam  peak  and  the  three  dB contour at a  sequence of times  and the effect of aberration on 
the  beam shape is evident. 
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Figure 4. Sequential beam steering. 
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I Agenda 

Introduction  and  Background 
The Continuum  Model  in Two Dimensions 
The Green’s  Function 
Solution for  Beamsteering 
Example Beam  Scanning  Behavior 
Concluding  Remarks 

L 

This presentation will  begin  with a description of the previous published work 
contributing to the results reported here. The previously developed one 
dimensional continuum model  will  be generalized to two dimensions and a 
Green’s function for the resulting differential equation will be obtained as an 
eigenfunction expansion. This will  be  used  to obtain dynamic solutions relevant 
to  the steering of the radiated  beam. Finally, some remarks concerning 
limitations on the interoscillator phase difference will  be provided. 
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Introduction 

Concept due to K. Stephan [IEEE Trans. 
MTT-34, pp.  1017-1025,October 19861. 
- Linear array of mutually injection locked VCOs. 
- External injection loclung of end oscillators. 

Shift relative phase of injection signals. 
Linear aperture phase with variable gradient. 

- Analysis via numerical solution of a system of first 
order nonlinear differential equations based on Adler’s 
theory of injection locking. 
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The fundamental concept of steering phased  array beams by appropriately 
injection locking the end oscillators of a linear array originated with Karl 
Stephan circa 1986. He suggested that linear phase progressions don the array 
could be established if  the end oscillators were injection locked  to a common 
external source and a phase shifter were inserted in one line to control the 
relative phase  of the two injection signals. 
This analysis of the array  took  the  form of numerical solution of a system of first 
order nonlinear differential equations derived  using Adler’s theory of injection 
lochng. This made intuitive understanding  of  the dynamics difficult. 
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Stephan’s Beamsteering Scheme 
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This diagram shows the Stephan scheme for beam steering. The  master 
oscillator provides injection signals to  the  two end oscillators while the phase 
shifter controls the relative phase of these signals. The result is a linear phase 
progression across the array. 
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Introduction (Continued) 

Continuum model by Pogorzelski  and  York 
[IEEE AP-S Symposium  Digest,  pp. 324- 
327, July 19971. 
- Continuous phase function of continuous variable 

- Governed by second order partial differential equation. 
- Steady state is analogous to electrostatics. 

indexing oscillators. 

Detuning=Charge 
Phase = Potential 
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Beginning around 1996, Pogorzelski and  York developed a continuum model of 
coupled oscillator arrays in which the  phase is described by a continuous 
function of a continuous variable  which,  when  it  takes on integer values, indexes 
the oscillators of the array. The behavior of this continuous function is governed 
by a second order linear partial differential equation which  can  be solved 
analytically using standard techniques. This greatly enhances insight into the 
dynamics of such mays and  the  relationship  between the behavior of the phase 
and  the external injection signals. 
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The M by N Array 
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This diagram schematically represents a (2M+1) by (2N+1) array of oscillators 
coupled to nearest neighbors. This is  the array to be analyzed in the following. 
The oscillators shown  in dashed lines are external sources which provide the 
properly phased injection signals to  the perimeter oscillators of the array. 
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The Continuum Model 

Begin  with Adler's theory applied to the 
array. 

p a -  M q=- N 

Define  the phase by: 

To derive the continuum model of this  two dimensional array, we begin with 
Adler's description of the injection locking phenomenon. In h s  theory, the time 
derivative of the phase of an injection locked oscillator is related to the sine of 
the phase difference between the oscillator signal and the injection signal. 
Generalizing this to the two dimensional array of mutually injection locked 
oscillators (with general interoscillator coupling topology) we arrive at the 
system of differential equations shown. We  then define the phase, phi, as shown 
relative to a reference frequency which can be chosen arbitrarily. 
The second double summation represents the externally provided injection 
signals. 
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The Continuum Model (Cont.) 

a 

Using this definition of phi the system of equations become that shown here. 
Then, assuming that the locking ranges are all the same, that the coupling phase 
is zero, and that the phase differences between adjacent oscillators is small, we 
can linearize the system as shown. Then, the quantity in  the square brackets can 
be identified as the finite difference approximation to the Laplacian operator. 
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The Continuum Model (Cont.) 

which leads to, 

I where, 

z = Aulock t 
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Thus, defining a continuous phi function and continuous variables x and y 
indexing the oscillators, we arrive at the partial differential equation for phi 
shown. V represents the distribution and strength of the injection signals with 
phase phi,,. Tau is time  measured in inverse locking ranges. 
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Boundary Conditions 

Employ  an  artifice  proposed  in  the  one 

Add  fictitious  oscillators on the  periphery. 
- Dynamically  tuned to reduce  injection  to  zero. 

dimensional  case. 

' - Results in a Neumann condition on  the 
boundary. 

10 

Having derived the differential equation governing the behavior of phi, we  must 
determine the boundary conditions at the perimeter of the array in order to 
uniquely define the solution. For this we use an artifice in which fictitious 
oscillators are added on  the periphery of the array and  these  are dynamically 
tuned in  such a manner as to render  the  phase of each fictitious oscillator equal 
to  its  nearest  real  neighbor in the array. This effectively emulates the absence of 
the fictitious oscillator because  when  the  phases are equal  the injection effect on 
the dynamics is zero by Adler's theory.  Now,  the equality of the two phases 
implies a zero value for the derivative of phase normal  to  the  array edge; i.e., a 
Neumann boundary condition. 

10 



This diagram illustrates the fictitious oscillator arrangement used  in  the 
boundary condition derivation. 

1 1  



12 

We intend to supply externally derived injection signals only to the oscillators 
on the perimeter of the array. This implies that the function F takes the form 
shown. C measures the strength of the  injection signals and  is measured in 
terms of the implied locking rangerelative to  the inter-oscillator loclung range. 
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The Differential Equation 

d2@ d2q9 d@ - 
&2 +p- W X ) @  - ~ Q ( Y > @  - 

For the case of perimeter injection, the differential equation governing the phase 
dynamics takes the form shown. This equation will be solved by  means  of a 
Green's function, G;  that is, a solution for the case of a delta function source 
term. The  Green's function will be expressed as a sum of  the eigenfunctions of 
the operator in the classical manner. 

13 



The Homogeneous Equation 

a’f d 2 f  
&2 +F - C P ( x )  f - C Q ( y )  f - sf = 0 
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We  begin by consideration of the  homogeneous equation. The Laplace 
transform with respect to  time is shown at  the  bottom of the slide. 
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Separation of Variables 

Then, X ” -  CPX - S , X  = 0 
Y’” CQY - syY = 0 

where, s = s, -I- s,. 

The homogeneous equation can be solved by the classical  separation of variables 
method. We assume  a product solution and obtain two ordinary second order 
differential  equations for the x and y dependences of the solution. Substituting 
the deisred form of  the V function results in  the equations shown at  the bottom 
of the slide. 
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The Solution for X 

X = A, cosh[ q a  + + x)]cosh[ &(u + f - X,‘]] 

1 

X = A, cosh[ &(a + - x)]cosh[&( u + $ + x,’)] 

16 

Focussing now on the x dependence, we find that the solution can be expressed 
in  the form shown with two unknown constants, the A’s. The A’s can be 
determined by inposing the appropriate discontinutity condition on  the spatial 
derivative at  the location of the two delta functions. 
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Evaluation of the A's 

At the delta's, x '1:; = q ,  x (x,') 

x '1;: = RX2 x ( x ; )  

which yields, 

17 

The discontinuity conditions are shown  here. These, when applied to the 
solution, provide a homogeneous set of simultaneous linear equations for the 
A's. For a solution to exist, the determinant of the coefficients matrix must be 
zero. 
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Evaluation of the A’s (Cont.) 

I where, 

M , ,  =f2, c o ~ h [ ~ ( a + ~ + x ~ ) ] ~ o ~ h [ ~ ( a + ~ - x * ; ) ]  

M,,  = n, cash[ &( a + + ?)]cash[ &( a + f - x i ) ]  

This slide  provides  the  detailed analytic expressions  for the matrix elements 
involved  in  the  determinant. 
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The Eigenvalues, s, 

A = sinh[&(2a + I)xs, sinh[&(2n+ l ) ]+~(Qxl  +Q,  Kcosh[,&(Za + I)] 

+:Q,, 1 &cosh[&(2x;)]+~R, &cosh[&(2x;)] 

- - 2 1 R, R, sinh[&(x; - x;)Xcosh[&(2a + 1 + x: - 4)]+ cosh[&(x; + x;)]}) 

19 

The  determinant of the matrix of M’s can  be  reduced  to  the  form shown  here. 
Setting  this  determinant  equal to zero  provides a transendental  equation  for  the 
eigenvalues of s,. 
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Eigenfunctions 

or 

20 

Once the eigenvalues are found, the homogeneous equations represent two 
relationships between the A's, each of  which give a solution. These two 
solutions differ only by a multiplicative constant. However, this constant can, in 
certain cases, be zero for one of the solutions, indicating that the appropriate 
normalization constant is infinite. In such cases it is expedient to  use  the other 
solution. 
The solution shown is, in fact, a linear combination of  the two solution chosen to 
create a symmetric looking expression. For normalization reasons as described 
above, two options are represented; Le.,  eta  equal  to one or minus one. The 
normalization integrals of the square of  this function over the extent of  the array 
can be carried out analytically because  they  only involve products of hyperbolic 
functions of x. The actual expressions are, however, a bit cumbersome. 
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Eigenfunctions (Cont.) 

Similar procedure  yields the y dependent 

The Green’s function  can  now be written  in 
eigenfunctions. 

terms of these  two  sets of functions. 
The Green’s function has no direct physical 

It will be  used to obtain  the  physically 
significance in this instance. 

meaningful  solution. 
21 

Carrying out the same solution procedure for  y yields the set of y dependent 
eigenfunctions. Multiplying the x and y dependent functions gives a doubly 
infinite set of normalized two dimensional eigenfunctions in  terms  of which the 
Green’s function may be expressed. 
It  is noted that this Green’s function is  the solution of  the differential equation 
with a delta function source. However, because the equation we are solving has 
line sources instead of  point sources, it is necessary to integrate the Green’s 
function over the sources to obtain a physically meaningful expression for the 
phase. 
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The Green’s Function 

x ( x ’ , s ~ ) Y ( y ’ , s , ) x ( x , s , ) Y ( y , s , )  
G(x ,  y ;  x’ ,  y’;  $1 = 

n=l m=l s-sm -sn 

is a solution of, 

This is the classical series expression for the Green’s function in terms of the 
normalized eigenfunctions and eigenvalues. It is a solution of the unphysical 
equation shown at the bottom of the slide. It is unphysical because the source 
distribution on the right side does not  match  that described by P and Q on the 
left side. 
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The Dynamic Solution 

We wish to solve, 

In terms of the Green’s function, the solution is, 

23 

To obtain the solution for the dynamic behavior of the oscillator phases, we 
must solve the partial differential equation shown. The Green’s function is 
useful  in  that the integral shown at the  bottom  of  the slide provides the solution 
sought. The integrand involves delta function and, as such, can be integrated 
quite easily. 
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P, Q, and finj for Beamsteering 

24 

A important consideration at this point  is the determination of the necessary 
injection signal phasing for beamsteering. We postulate the form indicated at 
the  top  of the slide. Using the P and Q appropriate to perimeter injection we 
obtain  the expression shown  at  the  bottom of the slide. This is linear in x and y 
and, as a result,  it can be shown that finj represents the steady state solution for 
the  phase. It is also just that  necessary  to steer the beam to the angles indicated. 
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The Dynamic Beamsteering 
Phase Solution 

which converges slowly. The  convergence  rate 
can  be  improved by adding and subtracting the 
known steady  state  solution.  That is, 

2s 

Substituting the beamsteering source function into the integral expression for the 
solution and carrying out  the integrations, which  can be done analytically, we 
obtain the series expansion for the solution. Each  term of the series has a pole in 
the complex plane the  location of which is given by the eigenvalue 
corresponding to  that  term.  The inverse Laplace transform can  thus  be obtained 
by residue calculus and  the solution in  the  time domain expressed as the residue 
series shown. 
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The Dynamic Beamsteering 
Phase Solution (Cont.) 

and the solution may be written in the form, 

The rate of convergence of the residue series can be increased by subtracting the 
steady state value of the series terms  and  then adding the known steady state 
solution to  the result. This procedure is illustrated in  this slide. 
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A Numerical Example 

Consider a 21 by 21 element  square array. 
Radiating  elements: 
- Half wavelength  spacing 
- Connected  to  each  oscillator 

27 

Consider a 21 by 21 element array with one radiating element connected to each 
oscillator. Let the radiating elements be spaced one half wavelength apart and 
let the external injection signals be  applied  to  the perimeter oscillators per the 
preceding theory. The following vugraphs show a series of computed results 
concerning the aperture phase and far zone  field of such an array. 
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These  graphs show the  time  evolution of the  phase  when  injection  phase 
appropriate  to  beamsteering is  applied. 
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This graph shows the beam peak (dots) and the three dB contour (closed  curves) 
as a function of time during the beamsteering transient resulting when a  step 
steering  injection phase designed to steer the  beam thirty degrees off normal is 
applied at time zero. 
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During the transient period, the aperture phase is nonplanar. This results in a 
temporary reduction in gain due to phase aberration. This graph shows this gain 
reduction as a function of time compared with the projected aperture loss to  be 
expected for each beam position. These curves were obtained by pattern 
integration. 
The irregular behavior is  attributed  to  the  fact that the abscissa is  time as 
opposed  to angle. Thus, the irregularities are due  to changes in the  rate  of  beam 
motion. 
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This shows a result corresponding to the one shown  in  the previous slide but, 
this  time,  with a weaker injection signal level. Note that  this causes the transient 
to decay more slowly. 
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This shows a result corresponding to  the one shown in the previous slide but, 
this  time,  with a stronger injection signal level. Note that,  while  this causes the 
transient  to decay more rapidly, the  gain dip is deeper and  the  peak  moves  more 
erratically  in this case. 
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This graph shows the result of four sets of steering injection phases applied in 
rapid succession. Note that the aberration effects seem to be greater when 
steering from one off axis position to another than  when steering to or from 
normal. 



Concluding Remarks 
Inter-oscillator phase  difference 
- Limited to 90 degrees. 
- Limit can be  mitigated  by: 

Reducing the element spacing. 
Adding oscillators between the radiating ones. 
Radiating at a harmonic of the coupling frequency. 

Injection signal phase  limited to 90 degrees 
from injected  oscillator  phase  unless  applied 
gradually. 
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One limitation of the present system is that the phase difference between 
adjacent oscillators is limited to 90 degrees to maintain lock. (The validity of 
the linearized theory actually requires that  the phase difference be small 
compared to 90 degrees.) This would appear to limit the scan of a radiating 
aperture with  half wavelength element spacing to 30 degrees off axis. However, 
this can be mitigated in several ways. One can reduce the spacing between the 
elements, one can radiate only from every second or every third oscillator, or 
one can radiate at a harmonic of the coupling frequency. 

Another apparent limitation concerns the injection signal phase. This arises 
because, to maintain lock, the  injection  phase cannot differ from the injected 
oscillator phase by  more  than 90 degrees. However, in practice this limitation is 
easily circumvented because it only applies to suddenly applied steering phases. 
If  the phase is applied gradually, the  only  limit  is  the one discussed above. 
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